
Extracting Structured Information From
Unstructured Text Using Synthesis and Learning

Ajinkya Rajput∗
ajinkya@iisc.ac.in

Indian Institute of Science
Bangalore, India

Sahil Garg∗
sahilgarg3098@gmail.com

Microsoft Research
Bangalore, India

Sriram Rajamani
sriram@microsoft.com
Microsoft Research
Bangalore, India

Chiranjib Bhattacharyya
chiru@iisc.ac.in

Indian Institute of Science
Bangalore, India

Deepak D’Souza
deepakd@iisc.ac.in

Indian Institute of Science
Bangalore, India

Abstract
We present a framework to extract structured information
from unstructured natural language text. We show that even
in an unstructured document we can extract information as
long as the information has some syntactic structure to it.
We develop a framework that takes a corpus of documents
and very few examples of entities to be extracted from these
documents. The framework then uses ML and program syn-
thesis techniques to extract the entities from the rest of the
documents in the corpus.

CCS Concepts: • Software and its engineering → Pro-
gramming by example; • Information systems→ Infor-
mation extraction.

Keywords: Programming by examples, Information extrac-
tion, Text tagging

1 Introduction
In this article we tackle the problem of extracting informa-
tion from unstructured natural language text. We develop a
framework that we call BoBW, which stands for Best of Both
Worlds. BoBW takes as input a corpus of natural language
documents. The user is required to mark entities that she
wants to extract in a small number of documents. BoBW
then extrapolates from this initial annotation, to annotate
similar entities in rest of the documents. The only constraint
here is that the entity that the user is extracting should have
some syntactic structure. A text has a syntactic structure if
it identifies the entity it represents in its form. For example,
the text having a structure such as "1080 x 1920", "1080p" and
"FHD/HD/UHD" is highly likely to refer to resolution. The
complexity of the problem arises from the fact that there
can be multiple such syntactic structures for the same en-
tity. Further, we may not know beforehand how many such
syntactic structures exist for a given entity in our corpus.

∗Both authors contributed equally to this research.

Named Entity Recognition (NER) systems like [5] and
[9] works with a fixed set of entities like Location, Orga-
nization, Person. They take natural language text as input
and assigns entities to tokens in input text. These systems
demonstrate impressive results. But these techniques require
large amount of data and the entities that these systems iden-
tify are fixed with the data-set used for training. A model
trained to extract entities from one syntactic structure has
difficulty generalizing to a different syntactic structure. We
develop a framework that requires minimal human effort of
just marking entities in a few (order of tens) documents.
Our work is inspired by [4] which deals with structured

attribute extraction from semi-structured text and shows
good results on texts of two forms, namely HTML docu-
ments and key-value pairs. In this work we do away with the
requirement that the document should be semi-structured.
Though we use a similar training loop, we identified and im-
plemented significant additions that enable entity extraction
to work on unstructured text. These additions are detailed
in the rest of this paper.

1.1 Approach
We begin by asking the user to annotate the entities she
wants to extract in a small subset of the corpus of all docu-
ments. We construct a small data set out of these annotations
as labels. We expect the size of this data set, and therefore
the human effort involved, to be very small.

We then train a Named Entity Recognition (NER) basedML
model (details provided in later sections) on this very small
data set to obtain a trained model. We run the ML model on
all the documents. We also define a field constraint function.
This functions allows the user to provide properties of the ex-
tracted entities. It is useful in rejecting the outputs that are ob-
viously wrong. For example, you can reject the value "heavy
object" when extracting the entity WEIGHT, since we expect
presence of digits in the token. We collect those outputs gen-
erated by the ML model on the rest of document that are ac-
cepted by field constraints and construct a set of tuples where



Rajput and Garg, et al.

each tuple contains (DocumentText,OutputValues). Each of
these tuples are input-output examples.
We give this set of input-output examples to a program

synthesis module. A string manipulation domain specific
language is defined in the program synthesis module. The
program synthesis module synthesizes a set of programs
that capture the syntactic structure of entities extracted by
the ML model. A key observation is that due to poor per-
formance of ML model, occurrences of entities in several
documents are not identified by the ML model. In practice,
we find that even entities with similar syntactic structure
are not consistently identified by the ML model in all the
documents. The program synthesis model does exactly that.
It captures the syntactic structure of the correctly identi-
fied entities and annotates the entities with same syntactic
structure in all the documents. These documents where the
program synthesizer could automatically annotate and the
annotations form another set of input-output examples. This
set of input output examples is given back to the ML module
to train the MLmodel. As we show below, with more labelled
data, the performance of the ML model improves. This pro-
cess goes on iteratively as long as we are able successfully
extract entities from more and more documents.

1.2 Interplay between ML and synthesis
The observation we are leveraging is that the ML model also
uses other features other than syntactic structures, and that
it can discover entities with new syntactic structures due
to the ML model’s ability to generalize. While this leads to
discovery of new syntactic structures, ML models do not
consistently identify all entities with same syntactic struc-
ture in all documents. Such consistency can be provided by
a program synthesizer, by synthesizing program to search
for well defined syntactic structure in all documents. The
program synthesizer just focuses on one feature i.e. syntactic
structure and looks for that features in the whole corpus. In
other words program synthesis module does rigorous appli-
cation really well. Here, we are iterating between learning
new things and mastering those things. For a good system
we need the best of both worlds.

We make the following contribution

• We develop an proof of concept of end to end infor-
mation extraction framework that can be trained with
minimal human efforts that works on unstructured
text.
• We develop a string manipulation DSL that is able to
prioritize multiple occurrences of a syntactic structure
by their relevance to the subject of a document.
• We present a detailed evaluation of our information
extraction framework.
• We construct two datasets of natural language text
about smart phone specifications and the extracted
specifications in english and hindi language.

The rest of the paper is organized as follows, Section 2
provides a motivating example and informally discusses the
working of BoBW. In Section 3 we discuss the ML model
used. Section 4 sets up the problem formally. We present
our proposed methodology in section 5. Section 6 Provides
details about the datasets used for evaluation. Section 7 de-
scribes the evaluation methodology and presents the results
of evaluation. Sections 8, 9 mentions related work and future
work respectively. Section 10 provides the conclusions.

2 Motivating Example
This framework has the potential of use in a wide variety
of applications, that involves extracting certain entities or
properties from any corpus comprising of natural language
textual data. To provide one such application, consider a cor-
pus of brochures or quotations about valves (in the domain
of ‘plumbing’). The task at hand is to tabulate multiple spec-
ifications of all the different valve types which are described
in the brochures. Each brochure contains information on a
single valve type. Some example specifications of the valves
are valve flux, valve max pressure, diameter etc. Perform-
ing this task is of interest because this is typically done by
humans so that engineers can make design decisions. Also
there are several products other than valves that need in-
formation extraction. Some other example use cases can be
-
• Extracting structured information (dates/land dimen-
sions/land areas) from legal documents.
• Extracting runs scored by a player or by a team in
different cricket matches from a corpus of blog articles
on cricket games (can be generalised to goals scored
in a football game/other sports).
• Extracting dates of importance from set of articles on
history or politics for creating a timeline or for other
further analysis
• Extraction of temperature and weather data statistics
from natural language blog articles on a city

These extracted values can then be used for question answer-
ing, to develop a dataset for further analysis and even for
comparing the articles with regards to structure or informa-
tion contained in them. The primary aim of this framework
is thus, to perform feature and specification extraction for
any natural language text corresponding to a fixed given
domain and also provide explainability for the technique
used to perform the feature extraction so that it can be in-
terpretable as well as generalised to further examples in the
domain (which is accomplished by program synthesis).
Our framework works specifically for any independent

corpus that may not be popular or easily available, and can
be used to extract/highlight non popular entities that ques-
tions like “what is maximum operating pressure of rexroth
2FRM6A valve” in the example of the corpus comprising of
brochures of valves.



Extracting Structured Information From Unstructured Text Using Synthesis and Learning

For our evaluation and testing purposes, we are using a
data-set of mobile phone review articles and attempting to
extract the entity “screen size” from these articles. Although
each review article speaks about one mobile phone which
is the topic of the article, this phone may be compared with
other models or products as well. In such cases, we would
like to obtain that value of the screen size that is belonging
to the mobile phone which is the topic of the article.

Figure 1. provides a strong example of such a scenario. This
is a review article about the phone “Acer Liquid Jade”. Having
selected a few paragraphs from the article which contain
an entity that looks like it could be a screen size (based on
the structure learnt for this entity from the outputs of the
ML model) in the figure, it can be seen that there are many
occurrences of such an entity. These entities are highlighted
in yellow, whereas the actual entity that we wish to extract
is highlighted in red.

Figure 1. Extraction of screen size entity from review article
on “Acer Liquid Jade”

In the second paragraph, there is a mention of the screen
size being 5 inch, but this is not directly related to the subject
and is instead mentioned as a feature that was retained from
the previous version of the phone “Acer Liquid Jade”. The
third paragraph again contains entities that look like screen
size, but this is because it is comparing another feature for
different screen sizes and is not actually indicating the screen
size of the subject. In the last paragraph, highlighted in red,
is the correct screen size value of the phone which is the
subject, and this is the value that we wish to extract using
our framework. When the ML model runs on this article, it
returns the value of “5-inch” for the annotation but it cannot
be interpreted why the ML model picked this value.
There are also multiple instances where the ML model

generated the wrong output, that was not the screen size
of the subject of the article. An example of this is provided
in Figure 2, which is a review article on the phone “Google
Pixel”. The value highlighted in red is the one we wish to ex-
tract and is corresponding to the screen size of Google Pixel,
the value highlighted in green is the one that is obtained as

output from the ML model and the yellow-highlighted value
is another occurrence that follows the syntactical structure
of the entity and could have been picked up by the ML model
but does not relate to the subject of the article.

Figure 2. Extraction of screen size entity from review article
on “Google Nexus”

In both of these aforementioned examples, it is seen that
the ML Model does output a value for the entity to be ex-
tracted but it does not use any knowledge regarding the
subject or domain of the articles and could generate both
correct outputs (as in the former case) or wrong outputs (as
in the latter case). Finally, there can also be another third case,
where the ML model does not generate any output at all but
the value of the entity does exist in the article. An example
of this is shown in Figure 3, where the text highlighted in red
is the value to be extracted and is found when the extraction
on the article is attempted using program synthesis. The ML
model did not generate any annotation for this review article
on “Oppo F7”. Through our framework, the mistakes made
by the ML model or the values that were missed out could be
extracted with the help of program synthesis. The programs
generated would also be interpretable and easy to read and
understand. The programs for these articles that are learnt
are as below -
• 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔𝑁𝑒𝑎𝑟𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 (𝑣, 𝑅𝑒𝑙𝑃𝑜𝑠 (𝑣, (
𝑠, ( [0 − 9]1, 2
.[0 − 9]1, 2.0, 3) − 𝑖𝑛𝑐ℎ)), 𝑅𝑒𝑙𝑃𝑜𝑠 (𝑣, (( [0 − 9]1, 2
.[0 − 9]1, 2.0, 3) − 𝑖𝑛𝑐ℎ
𝑠)))
• 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔𝑁𝑒𝑎𝑟𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 (𝑣, 𝑅𝑒𝑙𝑃𝑜𝑠 (𝑣, (
𝑠, ( [0 − 9]1, 2
.[0 − 9]1, 2.0, 3) − 𝑖𝑛𝑐ℎ)), 𝑅𝑒𝑙𝑃𝑜𝑠 (𝑣, (( [0 − 9]1, 2
.[0 − 9]1, 2.0, 3) − 𝑖𝑛𝑐ℎ,
𝑠)))
• 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔𝑁𝑒𝑎𝑟𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 (𝑣, 𝑅𝑒𝑙𝑃𝑜𝑠 (𝑣, (
𝑠, ( [0 − 9]1, 2
.[0 − 9]1, 2.0, 3)𝑖𝑛𝑐ℎ)), 𝑅𝑒𝑙𝑃𝑜𝑠 (𝑣, (( [0 − 9]1, 2
.[0 − 9]1, 2.0, 3)𝑖𝑛𝑐ℎ, [, .?!])))

3 The ML Model
For the ML model, we use the Spacy[1] library. It is a library
for natural language processing built with objective of get-
ting tasks done quickly. It provides a Tokenizer, Named Entity
Recognizer(NER), Part of Speech tagger and a dependency
parser. Spacy also provides pre-trained language models.



Rajput and Garg, et al.

Figure 3. Extraction of screen size entity from review article
on “Oppo F7”

For our ML model, we first train the NER in spacy. To
train the NER, spacy requires user to provide annotation in
the form of [𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥, 𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥, 𝐸𝑁𝑇 𝐼𝑇𝑌_𝑁𝐴𝑀𝐸]. We
provide these annotations from a human user in the first
iteration, and then the annotations are generated by the
program synthesis module in subsequent iterations which
are fed to Spacy in the training procedure.
Once NER is trained, it identifies the entities that we de-

fined in the documents provided to the model.

4 Formal description of the problem
The problem that we are trying to tackle is of extracting
heterogeneous entities from natural language text. In this
section, we formalize this problem and present the outline
of the Entity-extraction framework that is used. Here we
provide some definitions and set terminology to aid formal
description of the problem.

Data-sets and Fields. The input to the framework is a
tuple (D, E) where D is a set of natural language documents
and E is a entity. Entities are the name of information that
is to be extracted from the document. All the documents in
D are assumed to be on the same topic. Examples of data
sets and entities are a collection of articles about various
smartphones with SCREEN_SIZE as entity to be extracted,
a collection of various commentaries of a sport with DATE
of the match as the entity etc. An additional constraint on
entities is that the values for those entities in the documents
should have some syntactic structure. For example the entity
DATE has syntactic structure like dd-mm-yy. Note that there
can be multiple syntactic structures for the same entity and
this syntactic structure need not be same for the entities in all
the documents, for example dates can be given in following
format dd-mm-yy(12-10-19), dd-mm-yyyy(12-10-2019), dd-
mmm-yy(12-Oct-2019), dd/mm/yyyy(12/10/2019).
For the entity 𝐸 we define a partial function, field 𝑓𝐸 :

𝐷 ̸→< 𝑖𝑛𝑡, 𝑖𝑛𝑡 >. The field takes in a document and returns a
substring of the document that is the value of the entity in the
input document. The returned stubstring is represented by a
tuple of integers, starting index and ending index in the input
document respectively. The field function is a partial function
because the field function 𝑓𝐸 may not return anything (⊥) if
entity is not present in the document.

In current setting of the problem, we consider only one
entity to be extracted. We do so only for simplicity of pre-
sentation. However, the framework can be used to extract
multiple entities just by running the framework once for each
entity. The problem can also be set up to handle multiple
entities together without much effort.

Field Constraints. Given a field 𝑓 on a data-set 𝐷 , a field
constraint 𝐶𝐷,𝑓 : 𝑆𝑡𝑟𝑖𝑛𝑔→ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is a constraint that
is dependent on the document and the prospective values
of the respective field. Its a mechanism for user to provide
the properties that can out rightly identify wrong outputs.
Ideally, a constraint would have𝐶𝑓 (𝑖, 𝑜) = 𝑡𝑟𝑢𝑒 if and only if
𝑜 = 𝑓 (𝑖). In practice, such constraints can be difficult to write
or specify, since the user may not have a deep understanding
of what the field values look like, and so, we provide a model
where soft constraints can be given that are close approx-
imations to the actual constraints. It should be noted here
that the system can accustom to noise constraints which are
either an over-estimation or an over-approximation. These
constraints can be set for particular input documents or for
the entire data-set corresponding to a field. Field constraints
do not necessarily impose structure on the problem, these
function can be really trivial for human to come up with. Ex-
ample of field constraints for entity SCREEN_RESOLUTION
is that the output must have some numeric characters in
them.

Thus, the extracted field which is the output is a sub-string
of the input, which follows the given constraints for the field
(if any) such that no extension of the output satisfies the
conditions completely.

Annotations. Given an entity 𝐸 with corresponding field
𝑓𝐸 for a data- set D, an annotation, annotation(d), of a docu-
ment 𝑑 ∈ 𝐷 is a (𝑜, 𝑒) where: (a) 𝑜 = 𝑓𝐸 (𝑑) are the ground-
truth outputs (outputs of field functions defined in paragraph
above), and (b) 𝑒 is some optional supplementary informa-
tion given relevant to the field. In our implementation we
use 𝑒 to provide name of the product of the article to syn-
thesizer so that programs can prioritize entities with similar
syntactic structure.

Specification. Specification is a set of input output ex-
amples provided to program synthesizer. Specification is
defined as {(𝑑, 𝑠) |𝑑 ∈ 𝐷 ′ ∧ s is substring of d}, where 𝐷 ′ is
some subset of set of articles, 𝐷 . Specification is also referred
as Spec. A program 𝑃 is said to satisfy a specification 𝑆 if
∀(𝑎, 𝑜) ∈ 𝑆, 𝑃 (𝑎) = 𝑜

SoftSpec. Sometimes it might be impossible for a single
program to satisfy a specification. SoftSpec is set of input
output examples which can be partitioned into multiple sets
of input output examples such that each partition is a speci-
fication and therefore can be satisfied by one program each.

4.1 The Entity-Extraction Problem
We can now formally define the entity-extraction problem.
The extraction framework is provided with following inputs:



Extracting Structured Information From Unstructured Text Using Synthesis and Learning

1. A corpus of documents 𝐷 from a data set.
2. An entity that is to be extracted 𝐸.
3. an subset of inputs to be initially annotated using ora-

cle 𝐷𝑖𝑛𝑖𝑡 ∈ 𝐷 . i.e. seed inputs.
4. an optional field constraint

𝐶𝐷,𝑓 : 𝑆𝑡𝑟𝑖𝑛𝑔→ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}
For the abovementioned inputs, the entity extraction prob-

lem is to find a function 𝑓 ∗
𝐸
that is approximates 𝑓𝐸

5 The Entity-Extraction Framework
The meta algorithm for our entity-extraction framework is
shown in Algorithm 1. In addition to the inputs 𝐷,𝐷𝑡𝑟 ,𝐶𝐷,𝑓

described above, we supply to it a Domain Specific Language
𝐿. Figure 4. shows the overall architecture of our entity-
extraction framework. We briefly explain each of the com-
ponents of the framework here; full explanations follow in
the subsequent paragraphs.

Algorithm 1: Outer loop of entity extraction frame-
work
Require :Set of all the articles 𝐷
Require :Set of oracle annotated articles 𝐷𝑡𝑟

Require :Field constraint
𝐶𝐷,𝑓 : 𝑆𝑡𝑟𝑖𝑛𝑔→ 𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒

Require :Annotation oracle 𝐴𝑂𝑟𝑎𝑐𝑙𝑒
Require :DSL 𝐿

Result: Trained model𝑀
1 𝐴𝑛𝑛𝑜𝑡𝑠 ← {(𝑖, 𝐴𝑂𝑟𝑎𝑐𝑙𝑒 (𝑖)) |𝑖 ∈ 𝐷𝑡𝑟 };
2 do
3 𝑀 ← 𝑀𝐿𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑎𝑛𝑛𝑜𝑡𝑠) ;
4 𝑆𝑜 𝑓 𝑡𝑆𝑝𝑒𝑐 ← {(𝑖, 𝑀 (𝑖)) |𝑖 ∈ 𝐷};
5 𝑅 ← 𝐿𝑒𝑎𝑟𝑛𝑅𝑒𝑔𝑒𝑥 (𝑆𝑜 𝑓 𝑡𝑆𝑝𝑒𝑐);
6 𝑃 ← 𝑃𝑟𝑜𝑔𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠𝑒𝑟 (𝐷, 𝑆𝑜 𝑓 𝑡𝑆𝑝𝑒𝑐, 𝐿,𝐶𝐷,𝑓 , 𝑅);
7 𝑁𝑒𝑤𝐼𝑛𝑝𝑢𝑡𝑠 ← 𝐷/𝐷𝑡𝑟 ;
8 (𝐷𝑠𝑢𝑐𝑐 , 𝑁𝑒𝑤𝐴𝑛𝑛𝑜𝑡𝑠) ←

𝑅𝑢𝑛𝑂𝑛𝑁𝑒𝑤𝐼𝑛𝑝𝑢𝑡𝑠 (𝑁𝑒𝑤𝐼𝑛𝑝𝑢𝑡𝑠, 𝑃,𝑀);
9 𝐴𝑛𝑛𝑜𝑡𝑠 ← 𝐴𝑛𝑛𝑜𝑡𝑠 ∪ 𝑁𝑒𝑤𝐴𝑛𝑛𝑜𝑡𝑠;

10 𝐷𝑡𝑟 ← 𝐷𝑡𝑟 ∪ 𝐷/𝐷𝑠𝑢𝑐𝑐 ;
11 while 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
12 return𝑀 ;

MLTraining. The MLTraining procedure takes a set of
annotated documents as input and it generates a ML model
𝑀 . The ML models that we are using for this training are
described in Section 3. Given any input 𝑑 ∈ 𝐷 and the ML
model 𝑀 , 𝑀 (𝑑) returns a substring of 𝑑 . Ideally, 𝑀 (𝑑) is
the entity we wish to extract. The principal advantage of
using ML models, intuitively, is that they generalize across
different syntactic structure. ML models leverage a high level
features like shape of the entity, words following and before
the entity, vector representation of words etc. The model
training procedure we use is detailed in Section 3.

SoftSpec. Once the ML model, M, is trained we run the
model on all the inputs in𝐷\𝐷𝑡𝑟 . The set of tuples {(𝑑,𝑀 (𝑑) |𝑑 ∈
𝐷 \ 𝐷𝑡𝑟 } forms a soft specification labeled SoftSpec.

LearnRegex. The LearnRegex procedure takes SoftSpec
as input and returns a list of regular expressions that may
prove useful in synthesizing programs. The details of this
procedure are presented in Section 5.2.

The ProgSynthesiser. The ProgSynthesiser procedure
is provided SoftSpec, along with any field constraints the
user has provided. This procedure is also provided the set
of regular expressions R, which are learned by the system
using the model outputs. The ProgSynthesiser procedure
returns a set of programs 𝑃 = {𝑃0, 𝑃1, . . . , 𝑃𝑚}. We call this
sequence of programs a disjunctive program. For a document
𝑑 , we have that 𝑃 (𝑑) returns 𝑃𝑖 (𝑑) for least 𝑖 such that 𝑃𝑖 (𝑑)
satisfies the field constraint. Ideally each program captures
one syntactic structure. We seek to generate 𝑃𝑖 such that it
either generates the correct output if the document contains
the entity with the syntactic structure that 𝑃𝑖 captures, or
outputs null otherwise. The disjunctive program is thus able
to span the entire set of syntactic structures that are cap-
tured by each of the programs 𝑃0, 𝑃1, . . . , 𝑃𝑚 . As mentioned
in subsequent sections, the synthesized disjunctive program
𝑃 is able to enhance the precision and recall by a significant
factor compared to the machine learning model 𝑀 in iso-
lation. In addition, the programs are interpretable and can
be easily debugged. The disjunctive synthesis procedure is
detailed in Section 5.2.

RunOnNewInputs. The RunOnNewInputs procedure uses
these synthesized disjunctive program 𝑃 , obtained from the
ProgramSynthesiser procedure. It runs 𝑃 on all articles ex-
cept those already already passed to synthesizer i.e., 𝐷 \𝐷𝑡𝑟 .

The above 4 steps are repeated until some stopping condi-
tion is reached. This stopping condition can be fixed number
of iterations. Another stopping condition can be a plateau
in performance measures etc. In our implementation„ we fix
the number of iterations (usually a small number 3-5).

5.1 Program Synthesis from SoftSpec
As shown in Algorithm 1, the ProgSynthesiser step takes as
input a) set of articles 𝐷 , b) a soft specification SoftSpec c) a
domain specific language 𝐿, d) an optional field constraint
function 𝐶𝑓 : 𝐷 × 𝑆𝑡𝑟𝑖𝑛𝑔 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, and e) a list of
regular expressions 𝑅. The goal of the disjunctive synthesis
step is to produce a disjunctive program that can extract
output field values.
The output of ML model is noisy because the ML model

considers a lot of features simultaneously, and in our set-
ting it has a small amount of initial training data. Because
of this ML model correctly identifies the chosen entities in
only very few documents. There is also a high false pos-
itive rate, meaning ML model outputs substrings which



Rajput and Garg, et al.

Figure 4. Block diagram of the proposed Entity Extraction Framework

are not entities. However, even these few correctly iden-
tified entities implicitly provide instances of syntactic struc-
tures of the entity. For example, consider an entity DATE,
if 12/10/2019 is identified as correct output, we know that
dd/mm/yyyy is one of the possible syntactic structure of the
entity DATE_OF_PUBLICATION. However, as the initial ML
model is inaccurate, it misses entities with same syntactic
structure in other documents. By synthesizing a disjunctive
program we aim to leverage the syntactic structure that we
have discovered and annotate other entities that have the
same syntactic structure in other documents. With carefully
designed DSL we can make sure that we do not annotate
occurrences which conform to syntactic structure but are
not the entities that we want to extract. For example other
dates in articles which are not date of publications.

5.2 Disjunctive Program Synthesis Algorithm
In this section we give details about the program synthesis
module. This module is denoted by ProgSynthesizer in Al-
gorithm 1. We first setup some terminology and building
blocks. Then describe workings of the algorithm.

Example-based Synthesis. We use Microsoft PROSE
framework of program synthesis[6]. PROSE lets us provide a
grammar and semantics of Domain Specific Language (DSL)

and synthesizes programs in the provided DSL. Prose takes a
specification as input and returns program that satisfies the
specification. This is denoted by function 𝑆𝑦𝑛𝑡ℎ in Algorithm
2

Disjunctive Programs. A disjunctive program is a se-
quence of programs that satisfy a SoftSpec. The sequence of
programs is constructed with the objective that the these pro-
grams cover all the syntactic structures that occur in all the
documents. We call this sequence of programs A disjunctive
program 𝑃 is defined as a sequence of programs {𝑃0, ..., 𝑃𝑚}
where each program 𝑃 𝑗 : 𝐷 ̸→ 𝑆𝑡𝑟𝑖𝑛𝑔 is a partial function
such that, for a document 𝑑 , 𝑃 (𝑑) outputs 𝑃 𝑗 (𝑑) for least 𝑗
such that (a) 𝑃 𝑗 (𝑑) is defined and (b) 𝑃 𝑗 (𝑑) satisfies the field
constraint. Please note that the disjunctive program is a se-
quence and not a set. It is easier to explain reason in context
of explanation of Algorithm 2 in subsequent paragraph

SynthesisObjectives. Input to the algorithm is SoftSpec(set
of input output examples). The objective of the algorithm
is to builds clusters(smaller sets) of these input examples
such that each cluster can be satisfied by a single program.
Thus the SoftSpec is partitioned into so called HardSpecs.
We want to build these clusters(hardspec partitions) in a way
that maximizes the agreement of the synthesis and the ML
model.



Extracting Structured Information From Unstructured Text Using Synthesis and Learning

Algorithm 2: Algorithm to generate disjunctive pro-
gram
Require :SoftSpec 𝑆𝑆
Result: Sequence of programs

1 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠 ← [] ;
2 𝑖𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← [] ;
3 𝑈𝑛𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒𝐼𝑂 ← [] ;
4 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑇𝑜𝑃𝑟𝑜𝑔← {};
5 for (𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜𝑝) ∈ 𝑆𝑆 do
6 𝑠𝑝𝑒𝑐𝐼𝑛𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒;
7 for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑖𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
8 𝑝𝑟𝑜𝑔← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑇𝑜𝑃𝑟𝑜𝑔(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ) ;
9 if 𝑝𝑟𝑜𝑔(𝑎𝑟𝑡𝑖𝑐𝑙𝑒) = 𝑜𝑝 then
10 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑇𝑜𝑃𝑟𝑜𝑔.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟 );
11 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∪ {(𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜𝑝)};
12 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑇𝑜𝑃𝑟𝑜𝑔.𝑎𝑑𝑑 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑝𝑟𝑜𝑔);
13 𝑠𝑝𝑒𝑐𝐼𝑛𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒;

14 for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑖𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
15 if 𝑠𝑝𝑒𝑐𝐼𝑛𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒𝑑 then
16 break;
17 𝑡𝑒𝑚𝑝𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∪ {(𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜𝑝)} ;
18 𝑝𝑟𝑜𝑔← 𝑆𝑦𝑛𝑡ℎ(𝑡𝑒𝑚𝑝𝐶𝑙𝑢𝑠𝑡𝑒𝑟 );
19 if 𝑝𝑟𝑜𝑔 ≠ 𝑛𝑢𝑙𝑙 then
20 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑇𝑜𝑃𝑟𝑜𝑔.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟 );
21 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝑎𝑑𝑑 ((𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜𝑝));
22 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑇𝑜𝑃𝑟𝑜𝑔.𝑎𝑑𝑑 (𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟, 𝑝𝑟𝑜𝑔);
23 𝑠𝑝𝑒𝑐𝐼𝑛𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ;
24 break ;

25 if !𝑠𝑝𝑒𝑐𝐼𝑛𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒𝑑 then
26 𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← new 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ((𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜𝑝));
27 𝑝𝑟𝑜𝑔← 𝑆𝑦𝑛𝑡ℎ(𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ) ;
28 if 𝑝𝑟𝑜𝑔 ≠ 𝑛𝑢𝑙𝑙 then
29 𝑖𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟 );
30 else
31 𝑈𝑛𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒𝐼𝑂.𝑎𝑑𝑑 ((𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜𝑝));

32 𝑠𝑜𝑟𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑐𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑦𝑆𝑖𝑧𝑒 (𝑖𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠);
33 for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑖𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
34 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑟𝑜𝑔𝑇𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ));
35 return 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠

With the definition of disjunctive programs and synthe-
sis objectives setup, we present the details of the synthesis
algorithm.

Disjunctive program synthesis algorithm: Even with
a powerful framework like PROSE at hand, the synthesis
is challenging because we are trying to learn multiple syn-
tactic structures and a single program that covers all the

syntactic structure might not exist with a simple DSL de-
scribed above. One obvious choice is to make the DSL more
expressive but that will increase the complexity of the DSL
implementation and it won’t be easy to substitute DSLs while
applying the framework in different domains. We take an
alternative approach in which we try to synthesize multiple
simple programs that each captures only one or few syntac-
tic structures. As defined before we call this set of programs
a disjunctive program. To synthesize disjunctive program
we need to cluster the input output examples into different
clusters and try to synthesize a program using PROSE for
each of these clusters. The strategy for forming these clusters
is given in Algorithm 2.

Data structures and helper routines used in Algorithm 2

• programs: A list of programs
• ioCluster: A set of input output examples.
• ioClusters: A list of specifications. Note that each
specification is a set of input output examples. There-
fore ioClusters is a list of sets of input output examples.
• unlearnableIO: A list of input output example for
which prose could not generate any progrma
• clusterToProgram: A map from specification i.e set
of input output examples to program. Therefore we
store a program corresponding to each cluster.
• Synth: A call to prose framework to generate a pro-
gram for a specification
• sortClusterDescendingBySize: A helper routine to
sort the list ioClusters in descending order of size of
its clusters.

Remember, the objective of the algorithm is to partition
the SoftSpec into clusters.
The outer for loop on line 5, iterates over input output

examples i.e. ((𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜𝑝)) in SoftSpec 𝑆𝑆 . 𝑠𝑝𝑒𝑐𝐼𝑛𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒𝑑
is a flag that keeps track of weather current input output
example is added to some cluster. First this flag is set to 𝐹𝑎𝑙𝑠𝑒 .
Then, first inner for loop (lines 7-13), iterates through al-

ready built clusters. For each cluster, it executes the program
corresponding to that cluster with 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 as input. If the
output of the program is equal to 𝑜𝑝 , the program is added
to that cluster and map 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑇𝑜𝑃𝑟𝑜𝑔 is adjusted. And we
move on to next input output example
If all currently synthesized programs are unable to gen-

erate correct output 𝑜𝑝 then we try to synthesize new pro-
grams (lines 14-22). For each cluster we create a 𝑡𝑒𝑚𝑝𝐶𝑙𝑢𝑠𝑡𝑒𝑟

by adding current input output example to current cluster.
We try to synthesize a program on 𝑡𝑒𝑚𝑝𝐶𝑙𝑢𝑠𝑡𝑒𝑟 . If a such
a program is possible it will be synthesized. If program is
synthesize the mapping 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑇𝑜𝑃𝑟𝑜𝑔 is adjusted and we
move on to next input output example.
If 𝑆𝑦𝑛𝑡ℎ was unable to generate programs for any of the

clusters along with current input output example, We try to
learn a program only on current input output example (lines
25-29). We create a 𝑡𝑒𝑚𝑝𝐶𝑙𝑢𝑠𝑡𝑒𝑟 with only current input



Rajput and Garg, et al.

output example in it and we try to learn a program for this.
If a program is synthesized for this we store 𝑡𝑒𝑚𝑝𝐶𝑙𝑢𝑠𝑡𝑒𝑟 in
𝑖𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 list

Elsewe add current input output example to𝑈𝑛𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒𝐼𝑂

list

5.3 Importance of sorting
After processing each input output example this list is sorted
according to cluster size. This is important because when a
cluster size is big that means the there exists a program by
construction which satisfies all the input output examples
in that cluster. Even though the noisy ML model generates a
lot of outputs which are not the expected entity, we leverage
the following facts
• All the correctly identified entities, however less in
number have a syntactic structure, by construction.
• All the incorrect strings output by ML model will not
have structures in common. We assume that ML model
is slightly skewed toward the correct entities therefore
it is not consistent in outputs of incorrect entities.

Therefore the cluster for correct entities is slightly bigger
in size and captures the correct syntactic structure. When
running the disjunctive program on rest of the articles for
generating new annotationswewish to give prefer extracting
articles according to program that is more likely to capture
the syntactic structure of expected output.

Entity Extraction DSL L : The syntax for synthesis pro-
grams is given by grammar in Figure 5. The DSL is a inspired
from the FlashFill DSL[2] that uses strings and regular ex-
pressions. Following are some of the important features of
the grammar
• The @input construct: Here, @input represents the
placeholder symbol which holds inputs given to pro-
grams constructed in DSL. Here the input to programs
constructed in this DSL is a tuple of two strings, the
first being the text of the document and the second
specifying the subject of the article. In case no subject
is found for the article, then this element of the tuple
is null. The subject is not the input given to the our
framework but is computed by the framework as a
preprocessing steps.
• Operator SubstringNearSubject(v, pos, pos) and Sub-
string(v, pos, pos): Both these operators take a input
string, v, and two positions, i.e. pos, pos. And returns
a substring in v from first pos till second pos. Sub-
stringNearSubject(v,pos,pos) also does the same with
a small difference, it returns the substring demarcated
by pos, pos if subject, provided in second string of
2-tuple input is present within look around window
of a threshold from start.
• Operator RelPos(v, rr): This operator lets us search the
input string using regular expressions. This operator
takes a string, v, and a 2-tuple of regular expression

@input Tuple<string,string> v;

program := SubstringNearSubject(v, pos, pos)
| Substring(v, pos, pos);

pos := RelPos(v, rr);

int k;
Tuple<Regex,Regex> rr;

Figure 5. Syntax of the substring-based DSL language L

and returns an integer index, say i, in v such that at
the first regular expression matches on left of i and
second expression matches on right of i. For exam-
ple, substring(“ab98ef”,([a-z]+, d+)) will return index
1 because at index 1, ab matches [a-z]+ on left and 98
matches d+ on right.

Preprocessing. We perform two preprocessing steps in
each iteration after ML model produces noisy outputs and
before calling synthesizer.

1. Learning Regex: The RelPos(v, rr) operator take as in-
put a tuple of operators. While synthesizing programs,
the framework tries combinations of couple of regular
expressions from a list of regular expressions. This
step builds that list of regular expressions before the
program synthesis begins. To build the regular expres-
sions we use the TextMatching interface provided by
PROSE. This API takes a collection of string and re-
turns a collection of regular expressions that cover the
input list of strings. The text matching API performed
poorly when we provided all the outputs of ML model
to TextMatching API. To get a list of useful regular
expressions, we randomly sample the outputs from
ML model and call TextMatching API on that sample.
We repeat this till all the string in outputs are included
in a sample at least once.

2. Subject Identification: For each article we try to iden-
tify the subject of the article. We do this using a regular
expression [A-Z][a-zA-Z0-9]* [a-zA-Z0-9]+ that rep-
resent the subject of the conversation. We leverage a
basic assumption that the subject of the article will
occur with highest frequency. In our experiments we
see that it works pretty well. For instance, in our im-
plementation for the data-set of mobile phone reviews,
the subject for a review article on a Samsung Galaxy S5
phone was obtained as “Samsung Galaxy S5” although
there were instances of many other names of phones
in the article such as Iphone 5 and Motorola, because
the frequency count was highest for Samsung.



Extracting Structured Information From Unstructured Text Using Synthesis and Learning

6 Datasets
-What dataset are we using We perform our experiments on
two datasets.

• Smartphone blog articles, 𝐷𝑏

• Hindi news articles about gadgets, 𝐷ℎ

6.1 Smartphone blog articles, 𝐷𝑏

The dataset 𝐷𝑏 , is a collection of 1100 blog articles about
smartphones in english langugae. Most articles are about
one smartphone each. These articles are intended to inform
buyers about specifications, pros and cons and comparisons
with similar smartphones. The dataset also contains articles
which are about technology events and few comparison arti-
cles about more than one smartphones. All articles do not
follow any presentation template. The length of the article
varies from min 200 words to 20389 words.

6.2 Hindi news articles about gadgets, 𝐷ℎ

The dataset 𝐷ℎ , is a collection of 526 technical news articles
collected from website of news channels. The news articles
are from "smartphone and laptop news" in "technology" sec-
tion of the news website. The length of these articles vary
from 44 words to 3814 words with mean length of around
300 words.

7 Evaluation
7.1 Evaluation Methodology
For both the data sets we, partition the dataset into test_set
and train_set. test_set is generated by random selection. The
size of test set is approximately 10% of the size of the dataset.
Only the train_set is used during training the ML model and
synthesizing the programs. For the articles in test_set we
have manually extracted entities. As seen in previous sec-
tions, the proposed technique proceeds in iterations of syn-
thesizing programs and training the ML model. After each
iteration we get a trained ML model. We use the trained ML
model to extract entities from articles in test_set. Calculate
precision, recall and F1 score, by considering the manually
extracted entities as ground truth. The metrics are defined
as follows,

For a selected entity, Let
𝑀 be the trained model,
𝐺 the ground truth tabulated by manually going through

test_set,
𝑎 ∈ 𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 be articles in test_set,
𝑀 (𝑎) and 𝐺 (𝑎) be the entity extracted by the model and

manually respectively, and
⊥ denotes when model or ground truth does not return

any value.

• Precision p: This is the standard measure of false posi-
tives used in information retrieval, and is defined as:

𝑝 =
|{𝑎 ∈ 𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 |𝑀 (𝑎) = 𝐺 (𝑎) ∧𝑀 (𝑎) ≠ ⊥|

|{𝑎 ∈ 𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 |𝑀 (𝑎) ≠ ⊥}|
• Recall r: This is the standard measure of false negatives
used in information retrieval, and is defined as:

𝑝 =
|{𝑎 ∈ 𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 |𝑀 (𝑎) = 𝐺 (𝑎) ∧𝑀 (𝑎) ≠ ⊥|

|{𝑎 ∈ 𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 |𝐺 (𝑎) ≠ ⊥}|
• F1 score: This measure combines precision and recall
into a single number, and is computed as 2pr /(p + r ).

7.2 Experimental Setup:
We train a Named Entity Recognition (NER) model using
residual convolutional neural networks with the help of the
standard implementation of a tool named “Spacy”[1]. For
program synthesis, we use Microsoft "PROgram Synthesis
using Examples" (PROSE) library [6]. We use the DSL shown
in figure 5. All experiments below are performed on screen
size entity because it is present in all articles so ample ground
truth is available. It is present in different syntactic structures.
It is present in both Hindi and English datasets as English
datasets is only about smartphones where as hindi dataset
has articles about other gadgets like laptops etc. Also screen
size is easier to check with ground truth.

7.3 Evaluation
We wish to answer the following research questions -
• Q1 : Does combining ML model with the program
synthesis help in improving the model performance?
• Q2 : Does performing multiple iterations between the
ML model and program synthesiser result in better
extraction?
• Q3:When information related to the subject of the arti-
cle is added to the DSL, does it lead to better programs
for purpose of extraction?
• Q4 : Does this method generalize well?

Due to the stochastic nature of the ML model and the pro-
gram synthesiser, the framework does not provide any for-
mal guarantees regarding the extracted entity, but aims to
provide an answer as close as possible to it.

7.4 Does combining ML model with the program
synthesis help in improving the model
performance?

To answer this question we compared the performance of
model trained by proposed hybrid approach with 12 anno-
tations against spacy NER model trained using the same
annotations used for hybrid approach. Additionally we also
trained spacy on 1, 5, 11,16 annotations. The entity to be
extracted is screen size. The results are presented in Table
1. One point to note here is that recall is very low for only
ML methods where as recall is significantly more for hybrid



Rajput and Garg, et al.

Config Prec Recall F1
Hybrid .83 .72 .77

OnlyML-hyb .90 .55 .67
OnlyML-1 0 0 0
OnlyML-5 .9318 .41 .57
OnlyML-11 .57 .04 .075
OnlyML-16 .7 .12 .2

Table 1. Comparison with hybrid training with pure ML
training

approach. This result shows that hybrid approach improves
the performance of the system overall.

7.5 Q2 : Does performing multiple iterations
between the ML model and program synthesiser
result in better extraction?

To answer this question we compare performance metrics
after each iteration of proposed approach. The entity to be
extracted is screen size

Iteration Prec Recall F1
0 .85 .59 .70
1 .70 .60 .65
2 .79 .68 .73
3 .76 .68 .71
4 .78 .72 .75

Table 2. Effect of multiple iterations

We see similar trends in other experiments also. The trend
shows that multiple iterations between ML model and syn-
thesis improves system performance. One thing to note is
recall increases with number of iterations.

7.6 When information related to the subject of the
article is added to the DSL, does it lead to better
programs for purpose of extraction?

To get insight in this matter we compare the performance
of system with and without SubstringNearSubject operator
in the DSL. We present the metrics in Table 3 Columns with
with suffix "w/sub" are results of DSL with SubstringNear-
Subject operator and columns without the suffix are results
of DSL without that operator.

It can be noted that metrics for DSL with SearchNearSub-
string operator increase faster than that of a DSL without
the said operator. The precision and recall of DSL with the
operator is higher than the DSL without operator.

7.7 Q4 : Does this method generalize well?
To answer this question we repeated the experiment to ex-
tract screen size on dataset 𝐷ℎ . This dataset is in hindi. The

proposed approach with only one change. SubstringNear-
Subject operator was removed from DSL. The approach per-
formed well with virtually no change at all. In Table 4 we
present iteration wise metrics. The entity to be extracted is
screen size.

Here we can see that initially with evenwith 13 annotation
the precision, recall and F1 score are zero. In comparison
on English dataset the F1 score is between .55 and .60. We
believe this is because the language model for the Hindi
in spacy is not as mature as English. We see steady rise
in all 3 metrics with iterations. This result shows promise
that proposed approach can be used to speed up training
NLP models in non english language where, language and
training data is scarce.

8 Related Work
In machine learning literature, this work falls in broad area
of Question Answering. The Question Answering literature
is further divided into question parsing and understanding,
information extraction, and answer generation. This work
is closely related to information extraction. Information ex-
traction is popular and widely studied field. [7] presents a
popular framework for automatically learning rules or infor-
mation extraction system and works on both free and semi
structured text. More recently [10] employs bidirectional
transformers, a new deep neural network architecture for
information extraction task. It tries to derive quantitative
entities from business documents. [9] deals with extracting
information from semi structured text using probabilistic
parsing of a discriminative grammar. They demonstrate their
technique by extracting individual fields like first name, last
name, home phone number etc. from an address.

Another area that is closely related to present work is that
of Named Entity Recognition. It is usually used inside infor-
mation extraction systems to extract entities and leverage
their relations with other entities for higher level reasoning
for information extraction. Some of state of art in named
entity recognition is [8]. They present a new architecture
for neural network which they call Iterative Dilated CNNs.
This is an improvement in terms of training time and perfor-
mance of entity recognizer in [5]. [5] provides two models i.e.
LSTM based and CRF based. They show good performance
on dataset in English, Dutch, German and Spanish. Both
these works are tested on CoNLL dataset[3] which have only
ORG, PERSON, LOC and MISC entities.
Our work is closely related to [4] which performs the

task of entity extraction from semistructured datasets. They
use 2 datasets namely political dataset which is a store of
key value pairs, and a machine to human emails dataset
which are sent by travel aggregators, and had travel details
of the recipents of email. In the first case they extract entites
selected by user and in second case they extract the specific
details about the travel from the email e.g boarding gate, time



Extracting Structured Information From Unstructured Text Using Synthesis and Learning

Iteration Prec Prec w/sub Recall Recall w/ sub F1 F1 w/ sub
0 .85 .90 .59 .55 .70 .68
1 .70 .83 .60 .72 .65 77
2 .79 .83 .68 .70 .73 .76
3 .75 .79 .68 .69 .71 .74
4 .78 .78 .72 .68 .75 .73

Table 3. Effect of SubstringNearSubject operator

Iteration Prec Recall F1
0 0 0 0
1 .78 .40 .53
2 .78 .55 .65
3 .9 .66 .76
4 .94 .66 .78

Table 4. Performance on Hindi dataset

of departure etc. This work also synthesizes a disjunctive
program and proposes an approxmax cover algorithm,which
is a little different from what we do. One major difference in
approaches is that the proposed work here uses structure in
the information extracted while [4] uses the semi-structure
of the dataset.

9 Future Work
1. Preliminary results show promise in the proposed ap-

proach but we really want to stress test the system. To
see what breaks the system?What kind of inputs break
the assumptions stated in section 5.3 about importance
of sorting?

2. We started with substring language used in flashfill.
The current DSL operates at granularity of characters.
Since we need to anyway extract substrings from the
articles we should work at a granularity of tokens. The
token based DSL should be designed from scratch.

3. Proving formally that minor skew in the results of
ML model can be leveraged to train the ML model
better. If this is not possible, formulating the minimum
requirements on input annotations for this system to
work with high probability.

10 Conclusion
We developed a framework which uses machine learning
models and program synthesis for entity extraction from un-
structured data. The proposed framework works with very
few seed examples. We leverage the structure of information
that is to be extracted. We show improvement in perfor-
mance of whole system by carefully designing DSL using
a feature used in classical ML system for natural language
processing thus showing potential in innovative DSL designs.
We are going to undertake this task as part of future work.

We also provide a argument about how ML and program
synthesis models complement each other to utilize the in-
formation captured by each other. We present results of a
preliminary evaluation which shows promise and motivates
further rigourous investigation.

References
[1] [n.d.]. spaCy, Industrial-strength Natural Language Processing in

Python. https://spacy.io/
[2] Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. ACM Sigplan Notices 46, 1 (2011), 317–
330.

[3] Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawa-
hara, Maria AntòniaMartí, Lluís Màrquez, AdamMeyers, JoakimNivre,
Sebastian Padó, Jan Štepánek, et al. 2009. The CoNLL-2009 shared task:
Syntactic and semantic dependencies in multiple languages. (2009).

[4] Arun Iyer, Manohar Jonnalagedda, Suresh Parthasarathy, Arjun Rad-
hakrishna, and Sriram K Rajamani. 2019. Synthesis and machine
learning for heterogeneous extraction. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. 301–315.

[5] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. 2016. Neural architectures for named
entity recognition. arXiv preprint arXiv:1603.01360 (2016).

[6] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a frame-
work for inductive program synthesis. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 107–126.

[7] Stephen Soderland. 1999. Learning information extraction rules for
semi-structured and free text.Machine learning 34, 1-3 (1999), 233–272.

[8] Emma Strubell, Patrick Verga, David Belanger, and Andrew McCal-
lum. 2017. Fast and accurate entity recognition with iterated dilated
convolutions. arXiv preprint arXiv:1702.02098 (2017).

[9] Paul Viola and Mukund Narasimhan. 2005. Learning to extract in-
formation from semi-structured text using a discriminative context
free grammar. In Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval.
330–337.

[10] Ruixue Zhang, Wei Yang, Luyun Lin, Zhengkai Tu, Yuqing Xie, Zihang
Fu, Yuhao Xie, Luchen Tan, Kun Xiong, and Jimmy Lin. 2020. Rapid
Adaptation of BERT for Information Extraction on Domain-Specific
Business Documents. arXiv preprint arXiv:2002.01861 (2020).

https://spacy.io/

	Abstract
	1 Introduction
	1.1 Approach
	1.2 Interplay between ML and synthesis

	2 Motivating Example
	3 The ML Model
	4 Formal description of the problem
	4.1 The Entity-Extraction Problem

	5 The Entity-Extraction Framework
	5.1 Program Synthesis from SoftSpec
	5.2 Disjunctive Program Synthesis Algorithm
	5.3 Importance of sorting

	6 Datasets
	6.1 Smartphone blog articles, Db
	6.2 Hindi news articles about gadgets, Dh

	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Experimental Setup:
	7.3 Evaluation
	7.4 Does combining ML model with the program synthesis help in improving the model performance?
	7.5 Q2 : Does performing multiple iterations between the ML model and program synthesiser result in better extraction?
	7.6 When information related to the subject of the article is added to the DSL, does it lead to better programs for purpose of extraction?
	7.7 Q4 : Does this method generalize well?

	8 Related Work
	9 Future Work
	10 Conclusion
	References

